ENTRANCE EXAMINATION FOR ADMISSION, MAY 2013. M.Tech. (NANO SCIENCES AND TECHNOLOGY)

COURSE CODE: 305

Register Number :	
	Signature of the Invigilator (with date)

COURSE CODE: 305

Time: 2 Hours

Max: 400 Marks

Instructions to Candidates:

- 1. Write your Register Number within the box provided on the top of this page and fill in the page 1 of the answer sheet using pen.
- 2. Do not write your name anywhere in this booklet or answer sheet. Violation of this entails disqualification.
- 3. Read each question carefully and shade the relevant answer (A) or (B) or (C) or (D) in the relevant box of the ANSWER SHEET using HB pencil.
- 4. Avoid blind guessing. A wrong answer will fetch you -1 mark and the correct answer will fetch 4 marks.
- 5. Do not write anything in the question paper. Use the white sheets attached at the end for rough works.
- 6. Do not open the question paper until the start signal is given.
- 7. Do not attempt to answer after stop signal is given. Any such attempt will disqualify your candidature.
- 8. On stop signal, keep the question paper and the answer sheet on your table and wait for the invigilator to collect them.
- 9. Use of Calculators, Tables, etc. are prohibited.

1.	Whi	ch one of the foll	owing	aqueous soluti	ion will	exhibit highest l	boiling	g point?		
	(A)	0.01M Na ₂ SO ₄			(B)	0.01M KNO ₃				
	(C)	0.015 Urea			(D)	0.015 Glucose				
2.	Whi	ch of the followin	ng pai	itive de	viation from Rac	ult's l	aw?			
	(A)	Water – Hydro	Chlor	ric Acid	(B)	Benzene – Met	hanol			
	(C)	Water – Nitric	Acid		(D)	Acetone - Chloroform				
3.	Whi	ch one of the foll	owing	amines does n	ot unde	rgo a acylation?				
	· (A)	$C_2H_5NH_2$	(B)	$(\mathrm{CH_3})_2\mathrm{NH}$	(C)	(CH ₃) ₃ N	(D)	CH ₃ NH ₂		
4.	Whi	ch substance sho	ws ar	ntiferromagneti	ism?		٠	,		
	(A)	${ m ZrO_2}$	(B)	CdO	(C)	CrO_2	(D)	Mn ₂ O ₃		
5.	Whi	ch of the followi	ng on l	hydrolysis form	acetic	acid?				
	(A)	CH ₃ CN	(B)	C_2H_5OH	(C)	C ₂ H ₅ NH2	(D)	СН ₃ ОН		
6.	Pipe	eridine is	-							
-	(A)	Homolytic com	pound		(B)	Homolytic aron	natic (compound		
	(C)	Homolytic alicy	yclic c	ompound	(D)	None of the ab	ove			
7.	Among the following the strongest base is									
	(A)	$C_6H_5NH_2$			(B)	p-NO ₂ -(C ₆ H ₄)N	H_2			
٠	(C)	m-NO ₂ -(C ₆ H ₄)N	NH_2		(D)	C ₆ H ₅ CH ₂ NH ₂				
8.	C ₆ H	5CONHCH3can l	be con	verted into C ₆ H	I ₅ CH ₂ N	HCH₃ by				
	(A)	NaBH4	(B)	H ₂ -Pd	(C)	LiAlH4	(D)	Zn-Hg/HCl		
9.	Amo	ongst the following	ng the	most basic cor	npound	is				
	(A)	Benzylamine		· · · · · · · · · · · · · · · · · · ·	(B)	Aniline		•		
	(C)	Acetanilide		•	(D)	p-Nitroaniline				
10.	Whi	ch of the following	ng is/a	ıre monosaccha	rides?					
	(A)	Glucose	(B)	Lactose	(C)	Cellulose	(D)	Starch		
305				2						

11.	Low beca (A) (B) (C)	Air is reducing			air-sen	sitive, but are	rarely v	vater sensitive		
	(B)	·	g in nat			4.4				
		Roth air and n	_	ture while wate	er is ine	rt				
	(C)	B) Both air and water are oxidizing in nature								
	(0)	Both air and v	vater a	re no π -accept	ors					
	(D)			oxidation state blecules like H		asily lose elect	trons to	O2 but will not		
12.	The	final product of	the re	action [Mn(CO) ₆] ⁷ + C]	H₃Li → is				
	(A)	[Mn(CO) ₆]+ CI	I_3	•	(B)	[Mn(CO) ₅ CF	[₃] .			
	(C)	[Mn(CO) ₆]			(D)	[(CH ₃ CO) Mr	n(CO)5]			
13.	The prod	reaction between	en NH4	Br and Na me	tal in lic	quid ammonia	(solvent) results in the		
	(A)	NaBr, HBr	(B)	NaBr, H ₂	(C)	H_2 , HBr	(D)	NBr ₃ , H ₂		
14.		material that hur-nitrogen co		-	electric	al conductivit	y among	g the following		
	(A)	S ₄ N ₄	(B)	S7NH	(C)	S_2N_2	(D)	$(SN)_x$		
15.	Urai	nium fluorides (co-prec	ipitate with			•			
	(A)	CaF ₂	(B)	AgF	(C)	LiF	(D)	MgF_2		
16.		The actual magnetic moment shows a large deviation from spin-only formula in the case of								
	(A)	Ti ³⁺	(B)	V ³⁺	(C)	Gd^{3+}	(D)	Sm ³⁺		
17.	In th	ne IR spectrum,	, carboi	nyl absorption l	band for	r the following	compou	nd appear at		
					T T	o o				
	(A)	1810 cm ⁻¹	(B)	1770 cm ⁻¹	(C)	1730 cm ⁻¹	(D)	1690 cm ⁻¹		
18.	The	hybridisation o	of orbita	als of N atom ir	n NO₃⁻ .	NO ₂ +, and NH	[₄ + are re	spectively		
	(A)	$\mathrm{sp^2},\mathrm{sp^3},\mathrm{sp}$	(B)	$\mathrm{sp},\mathrm{sp^2},\mathrm{sp^3}$		sp ² ,sp, sp ³	•	sp, sp^3, sp^2		

- Which of the following is achiral? 19.
 - (A) Alanine

(B) Glycine

(C) Proline

- (D) Phenylalanine
- Tri phenyl methane can be prepared by

- Find the values of x in $2x^2 7x = 39$
 - (A) $\left\{\frac{13}{2}, -3\right\}$ (B) $\left\{-13, -6\right\}$ (C) $\left\{-13, -3\right\}$
- (D) {-13, 3}
- Solution set for the equation $\left(\frac{x}{x-1}\right) + \left(\frac{x-1}{x}\right) = 2\frac{1}{2}$ is
 - (A) (-2, 1)
- (B) (2, -1)
- (C) (1, 2)
- (D) (1, -2)
- The Quadratic equation whose solution set is (-2,3)
 - (A) $x^2 + x + 6 = 0$

(B) $-x^2 + x - 6 = 0$

(C) $x^2 - x - 6 = 0$

- (D) $x^2 + x 6 = 0$
- 24. The solution set for the two simultaneous x=3y+1 and $5(3y+1)^2+6(3y+1)-8=0$ equations
 - (A) (-1, -1/15)
- (B) (-1, 1/15)
- (C) (1, 1/15)
- (D) (1, -1/15)

- 25. $A = \begin{pmatrix} 5 & 4 \\ 3 & -1 \end{pmatrix}$, $B = \begin{pmatrix} -3 & 2 \\ 1 & 0 \end{pmatrix}$ and $C = \begin{pmatrix} 2 & 1 \\ 0 & 4 \end{pmatrix}$ then A+B-C is

- (A) $\begin{pmatrix} 4 & 2 \\ 2 & 3 \end{pmatrix}$ (B) $\begin{pmatrix} 10 & 3 \\ 2 & 3 \end{pmatrix}$ (C) $\begin{pmatrix} 4 & 7 \\ 2 & 1 \end{pmatrix}$ (D) $\begin{pmatrix} 4 & -7 \\ -2 & 3 \end{pmatrix}$
- Transpose of matrix $\begin{pmatrix} 3 & -2 \\ 7 & 4 \end{pmatrix}$

- (A) $\begin{pmatrix} 3 & 7 \\ -2 & 4 \end{pmatrix}$ (B) $\begin{pmatrix} -2 & 3 \\ 4 & 7 \end{pmatrix}$ (C) $\begin{pmatrix} 3 & -2 \\ 4 & 7 \end{pmatrix}$ (D) $\begin{pmatrix} 7 & 4 \\ 3 & -2 \end{pmatrix}$
- 27. Cos(A+B) is
 - (A) sin(A) cos(B) + cos(A) sin(B)
- sin(A) cos(B) cos(A) sin(B)**(B)**
- (C) $\cos(A)\cos(B) \sin(A)\sin(B)$
- cos(A) cos(B) + sin(A) sin(B)**(D)**

- 28. cos (A-B) is
 - (A) sin(A) cos(B) + cos(A) sin(B)
- sin(A) cos(B) cos(A) sin(B)(B)
- cos(A)cos(B) + sin(A)sin(B)(C)
- cos(A) cos(B) + sin(A) sin(B)(D)

- 29. tan (A+B) is
 - (A) $\frac{\tan(A) \tan(B)}{1 + \tan(A) \tan(B)}$

(B) $\frac{\tan(A) + \tan(B)}{1 - \tan(A)\tan(B)}$

(C) $\frac{\tan(A) - \tan(B)}{\tan(A) + \tan(B)}$

(D) $\frac{1+\tan(A)\tan(B)}{\tan(A)+\tan(B)}$

- 30. $\sin(3x)$ is
 - (A) $3\sin(x) 4(\sin(x))^3$

(B) $4\sin(x)-3(\sin(x))^3$

(C) $3\sin(x) - 4(\cos(x))^3$

(D) $\sin(x) - 3(\sin(x))^3$

- $\int \sec(x)\tan(x)dx$ is
 - (A) csc(x)cot(x)

(B) $-\sec(x)$

(C) $(\sec(x))^2(\tan(x))^2$

(D) sec(x)

- $\int \log(x) dx$ is 32.
 - (A) $x(\log(x-1))$

(B) **x** .

(C) $x \log(x) - 1$

(D) $\frac{1}{x} + \log(x)$

33.	$\lim_{x\to 0}\frac{\sin(x)}{x}$								
	(A) 0	Œ	3) 1		(C)	œ	(D)	п	
34.	$\lim_{x\to 0}\frac{\tan(x)}{x}$						•		
	(A) 0	(E	3) ∞		(C)	π	(D)	1	
35.	The line pe	rpendicular t	to 2x — 3	3y + 5 = 0	is				
•	(A) $3x +$	2y + k = 0			(B)	2x - 3y +	k = 0		
	(C) $3x +$	2y - k = 0		•	(D)	2x + 3y +	k=0		
36.	Length of a	a perpendicul	lar from	a given po	oint (x	,y ₁) to a gi	ven line a	x + by + c	c = 0
	$(A) \frac{x_1 + y_1}{\sqrt{a^2 + a^2}}$	$\frac{+c}{\overline{b^2}}$			(B)	$\frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}}$			
	(C) $\frac{ax_1+b}{a^2+b}$	$\frac{cy_1+c}{b^2}$	· -		(D)	$\frac{ax_1 + by_1 + c}{\sqrt{a+b}}$. •	,
37.		or makes ang ² γ is equal to		and $\dot{\gamma}$ wit	h OX,	OY, OZ r	espectivel:	y then sii	n²α +
	(A) 2	(E	3) 3	•	(C)	1	(D)	0	
38.		re the mid pulse of $A\vec{D} + \vec{D}$			BC,CA	A,AB respec	tively of a	triangle	ABC,
	(A) 1	(E	3) 2		(C)	0	(D)	3	
39.	The value	of determinar	$\operatorname{nt}\begin{pmatrix}1&a\\1&b\\1&a\end{pmatrix}$	$ \begin{pmatrix} a & b+c \\ b & c+a \\ c & a+b \end{pmatrix} $					
•	(A) a(b+c)+b(c+a)+c(a-	+b)		(B)	ab+bc+ca			
	(C) $a^2 +$	$b^2 + C^2$			(D)	0			
40.	,	of the verance equal to the							
	(A) 4 met	ers (E	3) 3 m	eters	(C)	5 meters	(D)	6 meters	J
905			.,	C .					-

41.	If F	$r = m \frac{dv}{dt} = 0$, then				•					
	(A)	Acceleration is	const	ant		·					
	(B)	velocity is const	ant		-						
	(C)	both acceleration	n and	l velocity are co	nstants	S		•			
	(D)	Force is constan	nt	•		• •					
42.		en an object of le a for the observer				a speed close to	the v	elocity of ligh			
	(A)	L			(B)	greater than L		-			
	(C)	less than L	-	:	(D)	None of these	٠	•			
43.		he given condition	n, $\frac{\mu_1}{\mu_2}$	$=\frac{\sin\theta_1}{\sin\theta_2},\ \theta_2\text{is ca}$	alled as	s Brewster's ang	le whe	en the reflecte			
	(A)	Polarized	(B)	Specular	(C)	Unpolarized	(D)	Diffused			
44.	Wha	What statement is true:									
	(A)	Electric field lin		tersect	(B)	Magnetic field	lines i	ntersect			
	(C) Electric field lines do not intersect (D) $\nabla \cdot \mathbf{B} \neq 0$										
45.	Expectation value of x in the simple harmonic oscillator is										
40.	_	•		-		•	(D)	٥			
	(A)	$h/2\pi$	(D)	x^2-2x	(0)	greater than 0	(D)				
40		1 61					.				
46.		nber of degenera	· .		:	· _					
	(A)	0	(B)	1	(C)	2	: (D)	3			
4 7.	Whi	ch of the followin	ng is h	aving a spin -1/	2?						
	(A)	Electron	(B)	Bosons	(C)	Quark	(D)	None			
48.	In a	adiabatic change	e.	•	•						
	(A)	PV = constant	,	•	(B)	$PV^2 = constant$	5	•			
٠	(C)	$\frac{PV}{T} = R$			(D)	PV = T					
49.	Δ ~~	ood absorber of ra	dieti	on is also a good	I reflec	tor					
TJ.	(A)	Uncertain	(B)	False	(C)	True	(D)	None			
	•		-		•		•				

50.	How many dead centres are there in one cycle of a steam engine?								
	(A)	1	(B)	2	(C)	3	(D)	4	
51.	The	internal resistar	nce of	a photodiode					
	(A)	Increases with	light	intensity when	reverse	biased		•	
•	(B)	Increases with	light	intensity when	forward	d biased			
	(C)	Decreases with	light	intensity wher	ı forwar	d biased	•		
	(D)	Decreases with	light	intensity wher	ı revers	e biased	•		
52.		ch of the follow ations and in pu	-		used f	or the perform	nance o	f many digital	
	(A)	Astablemultivi	brator	•	(B)	Monostable r	nultivib	rator	
	(C)	Bistablemultiv	ibrato	r	(D)	None			
53.	Оре	rational amplific	er can	be used as					
	_	Differentiator	(B)	Integrator	(C) A	Adder	(D)	All the above	
54.		dwidth when au 5 kHz is	dio fr	equency 15 kH	z is FM	modulated w	ith frequ	ency deviation	
	(A)	75 kHz	(B)	180 kHz	(C)	210 kHz	(D)	240 kHz	
55.	The	rate of deposition	n of p	ositive charges	in an io	onization cham	ber is n	neasured by	
	(A)	Quadrant Elec	trome	ter	(B)	Voltmeter			
	(C)	Ammeter			(D)	Wheatstone's	s bridge		
56.	The	population inve	rsion i	n He-Ne laser	is produ	iced by			
	(A)	photoexcitation			(B)	electron exci	tation		
	(C)	Inelastic atomi	ic colli	sions	(D)	chemical rea	ctions		
57.		the Bragg refle elength of the x-		_	parallel	adjacent plan	es sepa	rated by d , the	
	(A)	greater than 2	d		(B)	less than 2d			
	(C)	greater than d		. •	(D)	less than d			
58.	Isot	ope effect is repr	esente	ed by					
	(A)	$T_c{\sim}\theta_D$		n.	(B)	$T_c \!\! \sim \!\! \theta_D{}^2$			
	(C)	$T_{\rm c}{\sim}\theta_{\rm D}2$	•	•	(D)	$T_{c}{\sim}\theta_{D}^{-1}$			
						•			

59.		An electron is in a one-dimensional infinite square well of width 0.14 nm. The electron has an energy of 76.76 eV. What is its(electron's) state?										
•	(A)	1	(B)	2	(C)	3	(D)	4				
		•					•		•			
60.		Bragg angle co tal is 30° when a	_	-				-	n a			
•	(A)	$3.301\mathrm{\AA}$	(B)	1.031 Å	(C)	$2.031~{ m \AA}$	(D)	$3.931\mathrm{\AA}$				
61.		bond which ar as is known as	ise fro	om the large e	lectron	egativity differ	ence (1	7) of bond	ing			
•	(A)	Covalent	(B)	Co-ordinate	(C)	Ionic	(D)	Metallic				
62.	Cup	-and-cone fractu	re is t	he typical fracti	ure mo	de for		materials	3			
	(A)	Ductile	(B)	Brittle	(C)	Ceramic	(D)	Polymer				
63.	The	ratio of lateral s	strain	to linear strain	is calle	e d						
	(A)	Strain ratio			(B)	Poisson's ratio)					
	(C)	Modules of rig	idity	•	(D)	Fluxural rigid	ity					
64.	Which one of the following will have maximum capillary rise relative to mercury?											
	(A)	Benzene		•	(B)	Water	•					
	(C)	Ethyl alcohol			(D)	Methyl alcoho	1					
65.	Deflection of a cantilever beam under load on doubling its width will the deflection											
	(A)	Does not chang	ge		(B)	Reduce to half	£ .					
	(C)	Double	•		(D)	Triple		•				
66.	Coke	e oven gas is a n	aixtur	e of								
	(A)	H ₂ and CH ₄			(B)	CO and CO ₂						
	(C)	H ₂ and CO			(D)	CH4 and CO						
67.	Defi	ciency of air dur	ring th	e combustion of	gaseo	us fuels lead to						
	(A)	An increase in	flame	temperature	(B)	Lengthening of	of the fl	ame				
	(C)	Shortening of	the fla	me	(D)	Extinguishme	nt of tl	ie flame				
68.		otary mechanica ful work is know			s ener	gy form fluid fl	low and	d converts i	nto			
	(A)	Turbine	(B)	Compressor	(C)	Sensor	(D)	Solar cell				

69.	The phase transformation involving the formation of single solid phase is known as									
	(A)	Eutectic	(B)	Eutectoid	(C)	Peritectic	(D)	Pertitectoid		
70.	Carl	ourizing is done	to imp	rove	of th	e steel or iron				
٠.	(A)	Hardness			(B)	Ducticity				
	(C)	Ultimate tens	ile stre	ngth	(D)	Creep				
71.	Whi	ch among the fo	llowing	g class of ma	terials ha	s the highest o	lensity	•		
	(A)	Metals	(B)	Ceramics	(C)	Polymers	(D)	Compositors		
72.	Wat	er has higher b	oiling p	oint than me	ethanol as	nol as a result of				
	(A)	Ionic bonding			(B)	Covalent bor	ıd	•		
	(C)	Hydrogen bon	ding		(D)	Co-ordinate	bonding			
73.	Tim	e dependent ela	stic be	haviour is kr	own as					
	(A)	Plasticity			(B)	Super elastic	eity			
	(C)	Anelasticity			(D)	Super plastic	city			
74.	Single crystal turbine blades are produced by									
	(A)	Directional sol	lidifica	tion	(B)	Zone refining	g	••		
	(C)	Casting	·	· .	(D)	Hot isotactic	pressin	g		
75.		corrosion occ trically coupled	_				rent cor	npositions are		
	(A)	Galvanic corre	sion		(B)	Crevice				
. •	(C)	Pitting			(D)	Interganular	corrosi	on		
76.	Mag	netic hysteresis	curve	s for materia	ls does no	t depend on				
	(A)	Orientation of	grains		(B)	Presence of s	second-p	hase particles		
	(C)	Temperature			(D)	Electrical re	sistivity			
77.	The	operation of att	aching	IC chips to	lead frame	e plates is kno	wn as			
	(A)	Die bonding		•	(B)	Debonding				
	(C)	Packaging			(D)	Tape automa	ated bon	ding		
78.	Water clinging to the surface of the container is known as									
	(A)	Adhesion	(B)	Cohesion	(C)	Surface tens	ion (D)	Capillary		

79.	The function of alternator in an automobile is to								
	(A)	Supply electric power							
	(B)	Convert mechanical energy into elect	rical e	energy					
	(C)	Continuously recharge the battery							
	(D)	Partly convert engine power into elec	tric pe	ower					
80.	The	ability of the material absorb energy u	ıp to fi	racture is known as					
	(A)	Toughness (B) Resilience	(C)	Fatigue (D) Brazing					
81.	The	plasma membrane is covered by a cell	wall i	n cells of					
	(A)	Plants	(B)	Bacteria					
	(C)	Fungi and Algae	(D)	All of these					
82.	The	layer common to two adjacent cells cal	lled M	IDDLE LAMELLA is composed of					
	(A)	Calcium phosphate	(B)	Calcium sulphate					
	(C)	Calcium carbonate	(D)	Calcium pectate					
83.		ny folds of the inner membrane of mplete partitions which are called	mitoc	hondria project into the matrix as					
	(A)	Cristae	(B)	Grana					
	(C)	Inner membrane particles	(D)	Plastids					
84.	Whi	ch of the following are colorless plastic	ls?						
	(A)	Chloroplasts (B) Chromoplasts	(C)	Leucoplasts (D) All of these					
85.	Eac	h ribosome consists of two unequal sub	units	composed of					
	(A)	RNA and proteins	(B)	RNA and carbohydrates					
	(C)	Only RNA	(D)	Proteins and DNA					
86.	Whi	ch of the following increase the free su	rface (of the cell to enhance absorption?					
	(A)	Microfilaments (B) Microtubules	(C)	Microbodies (D) Microvilli					
87.	Whi	ch of the following is a non-membrano	us org	anelle?					
	(A)	Mitochondrium	(B)	Ribosome					
	(C)	Plastid	(D)	Endoplasmic Recticulum					
88.	Vac	uoles are sap filled vesicles in the cytop	plasm,	, covered by a membrane called					
	(A)	Protoplast (B) Leucoplast	(C)	Tonoplast (D) Chromoplast					

89.	The nucleoli and nuclear envelope disappear in which phase of mitosis?											
	(A)	Metaphase	(B)	Prophase	(C)	Anaphase	(D)	Telophase				
90.	Whi	Which of the following is formed between adjacent cell walls during cell division?										
	(A)	Primary cell wa	11		(B) .	Secondary cell v	vall					
	(C)	Tertiary cell wa	11	•	(D)	Middle lamella		<u>-</u>				
91.	The	The part of the pit membrane surrounding the torus is called the										
	(A)	Primary pit field	d	•	(B)	Pit chamber						
•	(C)	Margo			(D)	Pit aperture						
92.	The golgi complex is formed from which of the following cell organelles											
	(A)	Plasmalemma		•	(B)	· Nuclear envelope						
	(C)	Endoplasmic re	cticul	um	(D)	All of these						
93.	The	The cell wall of plants are made up of fibrils which predominantly contain										
	(A)	Glucose			(B)	Proteins						
	(C) Phospholipids					Polysaccharides	1					
94.	The rough endoplasmic recticulum is also known as											
	(A)	Protoplasm	(B)	Tonoplast		Ergastoplasm	<u>(</u> D)	All of these				
95.	The outer membrane of the nuclear envelope forms finger like processes which are pinched off into the cytoplasm. This process has been called											
	(A)	Budding	(B)	Blebbing	(C)	Detoxification	(D)	None of thes				
96.	Euk	Eukaryotic ribosomes are called										
.'	(A)	80S Ribosomes	(B)	70S Ribosomes	(C)	60S Ribosomes	(D)	5S Ribosome				
97.	The chemical present in the cell wall is											
	(A)	Pectin	(B)	Lignin	(C)	Cellulose	(D)	All of these				
98.	Mid	dle lamella conta	ins				•					
	(A)	Cellulose	(B)	Pectate	(C)	Lignin	(D)	Cutin				
99.	Mat	rix of cell wall is	mađe	of								
		Pectin		Hemicellulose	(C)	Glycoprotein	(D)	Cellulose				
100		rophilic chemical	of ce	ll wall is		·						
100.	(A)	Pectin		Suberin	(C)	Fat	(D)	Lignin				
		I ecuiti	(1)	CHOCKILL	(0)	. av	(1)	-uemm				